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ABSTRACT 

This paper introduces the concept of � -LCM cordial labelling, a graph labelling method 

evolving from cordial labelling, for connected and undirected simple � � �����, 	���
 . 

Utilizing a function �: ���� → ℤ� , where � ∈ ℤ�  and ℤ� � �1,2,3, … , �� , each edge is 

assigned a label ��������, ����
 �mod ��, when � and � are adjacent vertices. A �-LCM 

Cordial Labelling is defined by two conditions: �!� maintaining an absolute difference of at 

most one in the count of vertices labelled with any ! and ",and �!!� likewise, providing an 

absolute difference of at most one in the count of edges labelled with ! and ",for all !, " ∈ ℤ# . 
A graph is said to be � % LCM cordial graph if such a function exists. In our investigation of 

�-LCM cordiality, we delve into various types and specific examples of graphs. Notably, we 

found that cyclic graphs �#  do not exhibit � -LCM cordiality, whereas star graphs &#  do. 

Furthermore, we examine the �-LCM cordiality of lantern star graphs and � connected copies 

of star graphs. Moreover, we investigated the influence of pendant vertices on � -LCM 

cordiality. 

Keywords:  Cordial Labelling, �-Cordial Labelling, �-LCM Cordial Labelling. 

INTRODUCTION 

 In graph theory, a graph refers to a set of vertices and edges. These edges come in two 

distinct types: directed (weighted) and undirected (unweighted). In a directed graph, edges have 

direction, signifying a one-way relationship. Conversely, in an undirected graph, the edges 

denote a bidirectional relationship, allowing movement between vertices in both directions. In 

addition, there is a type of graph known as a “simple graph”. A simple graph has at most one 

edge between any pair of vertices and no loops, meaning no vertex connects to itself. The 

vertices can have varying orders. 

The concept of cordial labelling, introduced by Cahit in 1987, has been subject to 

substantial expansion over the years. Initially focused on assigning harmonious labels to graph 

vertices and edges, this concept evolved with Hovey’s (1991) introduction of �-cordial graphs 

in 1991, providing a more generalized structure.  The key findings that you expect to present 

in the article, giving the reader a preview of what to anticipate. A subsequent study by Maged 

Z. Youssef in 2009 expanded these ideas, introducing necessary conditions and new families 

of 4-cordial graphs. In this paper, we introduce the �-LCM cordial labelling. Additionally, we 

note that hereℤ# � �1,2,3, … , ��. 



 

 

11th ISC 2024 (Universitas Advent Indonesia, Indonesia) 

“Research and Education Sustainability: Unlocking Opportunities in Shaping Today's 

Generation Decision Making and Building Connections” October 22-23, 2024 

 

1413 

 

GRAPH PRELIMINARIES 

Within this chapter, we are going to define the structural characteristics inherent in the graphs 

underpinning this paper. 

Cycle Graph 

A cycle graph, denoted as �', is defined as a graph comprising ( vertices embodying a closed 

loop. Formally, �' consists of a set of vertices � � ��), �*, . . . , �'�, where each vertex �+  is 

connected to its adjacent vertices in a circular sequence, thus establishing a cycle. 

Conventionally, vertex �+  is connected to both �+ , 1  and �+ % 1  for ! � 1,2, . . . , ( , with 

indices taken modulo ( to ensure the closure of the cycle. It is worth noting that cycle graphs 

are defined for ( - 3, a minimum of three vertices is necessary to form a cycle. Additionally, 

each vertex in a cycle graph has a degree of two, signifying that it is connected to precisely two 

edges. 

Wheel Graph 

A wheel graph, denoted as .', emerges from the combination of a central vertex with a cycle 

graph �'/),  followed by connecting the central vertex to all the vertices in �'/). 
Consequently,.' consists of ( vertices and 2�( % 1� edges. It is worth noting that the central 

vertex has a degree of (, reflecting its connection to the remaining vertices, while each of the 

vertices within �'/) maintains a degree of three due to their connection to the central vertex 

and the two adjacent vertices. 

Complete Graph 

A complete graph, denoted as 0', is a graph where every pair of distinct vertices is connected 

by a single edge, achieving maximal connectivity with a degree of ( % 1, it does not necessarily 

arise from a cycle graph. With ( vertices, it contains 
'�'/)�

*
 edges. Notably, 0' is also a planar 

graph for ( 1 4, meaning it can be represented on a plane without any edge intersecting. 

Below are some of graphs depicting a complete graph, providing a clearer understanding. 

 

Path Graph 

Figure 1. Examples of 0' 
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A path graph, denoted as 3', is a linear sequence of vertices connected by edges. With a core 

principle of simplicity, each vertex is connected to the next vertex by a single edge. The path 

length corresponds directly to the size of the edges, while the endpoints signify its 

discontinuity. 

Star Graph 

A star graph, denoted as &', is a distinctive type of a tree graph characterizing a central vertex 

connected to ( peripheral vertices. With ( , 1 vertices and ( edges, the central vertex has a 

degree of (,while the peripheral vertices each have a degree of one. 

Tadpole Graph 

The tadpole graph, denoted as 4',5, emerges by amalgamating a path graph 35 with a cycle 

graph �', where one end of the path connects to the cycle, forming a distinctive “tadpole” 

shape. With ( , 6 vertices and edges. Below are some examples of tadpole graph, providing 

a clearer understanding. 

 

Bridge 

A bridge is defined as an edge that upholds the connectivity of the distinct components of a 

graph. Its removal would result in a disconnection in the graph, partitioning into two or more 

disjoint subgraphs. However, it is noteworthy that the addition of a bridge nullifies the effect 

of the first bridge. Consequently, the presence or absence of bridges affects the structural 

coherence and connectivity within a graph. 

 

K-LCM C789:;< <;=><<:?@  

Figure 2. Examples of Tadpole Graph 
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We now present the �-LCM cordial labelling and classify �- LCM cordiality of some graphs.  

Definition 1 Let � � �����, 	���
 be a graph and �: ���� → �1,2,3, … , ��. The induced � %
LCM  edge labelling �∗: 	��� → �1,2,3, . . . , ��  is given by �∗�E� �
��������, ����
 �6FG ��  for an edge E � �� . Here, �/)�!�  refers to the set of vertices 

labelled with !, and ��∗�/)�!� refers to the set of edges with induced labelling !. The counts of 

vertices and edges with labels ! �HℎEJE ! � 1,2,3, . . . , ��  are denoted as �K�!�  and EK�!�, 
respectively. A � % LCM labelling of a graph G is said to be � % LCM cordial if the following 

conditions are met: 

�!� For any !, ", 1 1 !, " 1 � L�K�!� % �K�"�L 1 1, and 

�!!� For any !, ", 1 1 !, " 1 � LEK�!� % EK�"�L 1 1. 

To discuss examples, let us take a look at some connected graphs on four vertices. 

 

On the next page, our objective is to investigate the � -LCM Cordiality of the graphs is 

presented in Figure 4. Recall that 3M and &M are path and star graphs, respectively. We assert 

that they are 4-LCM cordial graphs.  

We will mention some insights into why 4N,), .M, �M, �M, and 0M failed to meet the criteria for 

being �-LCM Cordial graph. 

 

Proposition 1 The tadpole graph 4N,) is not a 4-LCM cordial graph. 

Figure 3. Connected graphs with 4 vertices 
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3JFF�. Consider the Tadpole graph 4N,) which consists of a cycle with 3 vertices (the “body”) 

and one pendant vertex (the “tail”). In this graph, L��4N,)
L � 4 and L	�4N,)
L � 4. Hence, to 

be 4-LCM Cordial, there must exist a function �: ��4N,)
 → ℤM such that |�/)�4�| � 1. 

However, finding such labelling within 4N,) is impossible. Considering the function �: ��4N,)
 

→ �1,2,3,4�, placing �M as a pendant vertex, it emerges as the sole option to be labeled as 4 to 

prevent the formation of two edges with induced labeling 4. Let us proceed to evaluate the 

labelling below if we choose �* to be adjacent to �M. 

Let us shift our focus to the remaining vertices, denoted by �) and �N, as shown in Figure 6. 

Note that �* will inevitably be adjacent to both �) and �N,which will be labeled l or 3, thereby 

resulting in ��∗�/)�2� � 2. Similarly, regardless of whether �) and �N come from 1 or 2, it is 

inevitably a consequence that ��∗�/)�2� equals 2. This observation strengthens the argument 

against 4N,) being a 4-LCM Cordial Graph. 

 

Proposition 2 The cyclic graph �M is not a 4-LCM 

cordial graph. 

3JFF�. Notice that in any case of labeling, the vertex 

labeled with 4 will always be adjacent to the other two 

vertices. Hence there will be two edges with induce 

labeling 4. See for example the labelling in Figure 7. 

Proposition 3 The graphs GM, 0M, P(G .M are not 4-

LCM cordial graphs. 

Figure 4. 4N,) with label 4 Figure 5. 4N,) with label 4 & 2 

Figure 6. Illustrated labelled vertices 

Figure 7. �M with labelled vertices 
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3JFF�. As previously proven, a cycle graph �M devoid of a pendant vertex cannot be 4-LCM 

Cordial. Consequently, considering the inclusion of �M as a subgraph, hence, �M, 0M,and .M do 

not possess the property of being 4-LCM cordial graphs.  

 

 We shall now look at more general results.  

Theorem 1 Cycle �# is not a k-LCM cordial graph. 

3JFF�. Since every vertex of �# is of order 2 then |��∗�/)���| � 2. Since |	��#�| � � then 

∃ ! such that ��∗�/)�!� � ∅. 
 

Theorem 2 Let G be a graph with |	���| 1 |����| and suppose that �: ���� → ℤ# with � �
|����|. If �  is a k-LCM cordial labelling of G then the sole element of �/)���must be a 

pendant of G.  

3JFF�.  Assume that �  constitutes a � -LCM cordial labelling of �.  Since |����| � �  and 

�: ���� → ℤ# , � is a one-to-one mapping. If, in case, �/)��� is not a pendant, then there will 

be at least two edges with induced labeling �. This is not possible, since � is �-LCM cordial 

and |	���| 1 |����| � �,a contradiction. 

 

Theorem 3 Star Graph &# is a k-LCM Cordial Graph.  

3JFF�.  Consider the following labelling in Figure 9. 

Notice that a star graph has a central vertex connected to 

a peripheral vertex, creating a star-like pattern with � % 1 

pendant vertices. The labelling of the vertices and edges 

in this figure exemplifies a � %LCM cordial labelling.  

 

 

 

Figure 9. Graph &# 

Figure 8. Cycle Spanning Subgraph 
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Theorem 4 The Lantern Star graph denoted by &�# is a k-LCM Cordial Graph. 

 

3JFF�. Let the Lantern Star graph &�#, defined by amalgamating a star graph &' to a path 

graph 3*  with a bridge. Here, 3*  formed by �#/)and �#, with the bridge being the edge 

connecting the central vertex and �#/). 

 

Theorem 5. Let � be a connected graph on � vertices with |	���| - �. If 6� , 1 is a prime 

number for 1 1 6 1 � % 1, then � is not a �-LCM Cordial Graph.  

3JFF�. Consider the scenario where 6 ⋅ � , 1 is prime for 1 1 6 1 � % 1. Let �: ���� → ℤ# 

be a labelling function. For !, " ∈ ℤ# with ! T ", assume 6 satisfies 1 1 6 1 � % 1 and that 

6 ⋅ � , 1 is prime. This implies that no edge in � can have an induced label of 1. The reasoning 

behind this is that � is not a prime number, and 6 ⋅ � , 1 is always a prime number due to the 

assumed conditions. Additionally, adding 1 to 6 ⋅ � ensures that the resulting number is not 

divisible by �.  

If 6 ⋅ � , 1  is prime, it implies that LCM�����, ����
 T 1 �mod ��.  Consequently, there 

does not exist !, " ∈ ℤ# such that LCM��+ , �U
 ≡ 1 �mod��.  

The contradiction arises from the existence of two edges in � with the same induced labelling, 

violating the requirements of �-LCM Cordial labelling, which mandates distinct labels for each 

edge. This contradiction leads to the conclusion that the conditions for a �-LCM Cordial 

labelling is not satisfied, establishing that � is not a �-LCM Cordial Graph. 

 
 

 

 

Figure 10. Graph &�# 
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We will now consider �-LCM cordial labeling where � 1 |����|.  

Theorem 6. A connected 6 % WFX!EY star graph &5,' is an 6-LCM Cordial graph. 

 

3JFF�. Considering the labeling of the figure on the next page, observe that |�/)�!�| � 6 and 

6 % 1 1 |��∗�/)�!�| 1 6 for any !,  1 1 ! 1 6. 
 

Theorem 7. An 6-connected Star-cycle graph &�5,' is an 6-LCM Cordial graph. 

 

 

3JFF�.  Considering the labeling above, observe that |�/)�!�| � |��∗�/)�!�| � 6  for any 

!, 1 1 ! 1 6. 

 

CONCLUSION AND RESEARCH DIRECTION 

 In conclusion, the concept of �-LCM cordial labelling for connected undirected simple 

graphs have successfully been explored and has been introduced. We have defined the method 

Figure 11. Graph &�# 

Figure 12. m-connected Star-cycle Graph 
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and established conditions for �-LCM cordial labelling, elucidating its properties through 

comprehensive examples including cyclic graphs, star graphs, a lantern star graph, and 

configuration of connected copies of star graphs.  

The particular significance of our discovery is the consistency of star graphs as �-LCM 

cordial, underlining their relevance within the structure. Additionally, we have uncovered the 

impact of pendant vertices in determining a graph’s �-LCM cordiality, exemplified by the 

absence of such vertices in cyclic graphs leads to their insufficiency to the conditions. 

Numerous future research directions could include: 

 Structural Patterns and Dynamics: Examine structural patterns of cordial graphs, 

including vertex labels, degree distribution, and connectivity, to uncover connections 

between the graph structure and �-LCM cordiality. Study how �-LCM cordial labelling 

evolves under graph operations like edge additions, deletions, or vertex contractions. 

 

 Algorithm Development and Uncertainty Analysis: Enhancing algorithms and 

assessing the computational complexity of determining �-LCM cordial labelling across 

diverse graph classes could facilitate applications in graph theory and related domains. 

Additionally, expanding the algorithmic structure through conducting probabilistic 

analysis explores the uncertainty of randomly generated graphs in exhibiting �-LCM 

cordiality. In generating graphs, verify �-LCM cordiality, and analyze probabilities 

with structural properties to understand when this property occurs and its implications 

for graph theory and applications. 

 

 Complementary Graphs: Explore the conditions under which the complement of a k-

LCM cordial graph also exhibits k-LCM cordiality. 

 

 Graph Fusion 

 Bridge Addition and �-LCM graphs: Exploring how adding a bridge between �� % 

copies or different types) graphs affect their �-LCM cordiality. Explore under what 

conditions the resulting graph maintains �- LCM cordiality, and how this fusion 

influences this property. 

 

 Amalgamation of Non-cordial Graphs: Explore whether a fusion of non-cordial 

graphs via a bridge produces a �-LCM graph. Investigate the necessary conditions 

for this and develop algorithms to identify suitable bridge configurations. 

 

 Extension to Weighted Graphs: Extend the amalgamation to directed or weighted 

graphs. Investigate how edge weights influence the preservation of � -LCM 

cordiality properties during amalgamation. 

In summary, by pursuing these research directions, we aim to enrich our understanding 

of k-LCM cordial labelling, exploring its complexity, properties, and connections. 
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