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ABSTRACT 

A full descriptive characterization of essentially bounded Henstock-Kurzweil integrable 

function is given. More precisely, an essentially bounded function � on ��, �� is Henstock-

Kurzweil integrable if and only if there exists a function F satisfying the Lipschitz condition 

on [a,b] with �′	
� � �	
�  almost everywhere. Some implications were given, including 

integration by parts, substitution formula and a convergence theorem. These known results 

were presented and proved using the existing results in the Henstock-Kurzweil integration. 

Keywords:  Henstock-Kurzweil integral, essentially bounded functions. 

 

INTRODUCTION AND LITERATURE REVIEW 

 A sequential definition for the Henstock-Kurzweil (HK) integral is possible as pointed 

out in (Lee, P. Y., 2007). A real valued function f on a compact interval [a,b] in R is HK-

integrable to a real number A, written 	�� � ��
� � � , if there is a sequence of positive 

functions �� , � � 1,2,3, …, such that for every ��-fine division �� � �	��, ��, ���, we have 

 ��!∑�	��	� # �� → � �& � → ∞. 
An HK-integrable function �  on [a,b] is also (HK)-integrable to any subinterval of 

[a,b]. Hence we can define a function F such that F(a) = 0 and �	
� � 	�� � �)
�  for a ∈ (a,b]. 

This function is called the primitive of F. In Theorem 5.7 of (Lee, P. Y., 1989) and in Theorem 

5.9 of (Bartle, R. G., 2001), it was shown that if F is primitive of � in [a,b] then �′	
� � �	
� 

almost everywhere on ��, ��. 
There are several full descriptive characterization for the HK-integral. Among them is 

that a function f on [a,b] is HK-integrable if there exists a function F satisfying the strong Lusin 

condition with �′	
�  �  �	
� almost everywhere. For the discussion please see (Lee, P. Y. & 

Vyborny, R., 2000). It was then shown in (Bongiorno, B & Piazza, L., 1996) that a function 

satisfying the strong Lusin condition is differentiable almost everywhere. Hence a function F 

is the primitive of an HK-integrable function if and only if F satisfies the strong Lusin 

condition. 

For easy reference, we state the following results. 
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Theorem 1.1. Let a function � on [a,b] be HK-integrable with primitive F. Then �′	
�  �  �	
� 

almost everywhere. 

Theorem 1.2. A function f on [a,b] is HK-integrable if and only if there exists a function 

F satisfying the the strong Lusin condition with �′	
�  �  �	
� almost everywhere. In this case 

	�� � ��
� � �	�� # �	��. 

In (Calunod, I. D., and Garces, I. J. L., 2021) and (Thompson, B. S., 2014), 

independently, a characterization of the primitives of Riemann integrable functions was given. 

It was shown that a function F on [a,b] is the primitive of a Riemann integrable function on 

[a,b] if and only if F satisfies the Lipschitz condition and is strongly differentiable almost 

everywhere on [a,b]. We say that a function F on [a,b] satisfies the Lipschitz condition if there 

exists a nonnegative number M such that for any subinterval [u,v] of [a,b] we have |�	�� #
�	��| , -	� # ��. A function satisfying the Lipschitz condition also satisfies the strong Lusin 

condition. Then the following statement holds. 

Theorem 1.3. If F satisfies the Lipschitz condition on [a,b] then F is differentiable almost 

everywhere. 

Recently in (Indrati, Ch. R. and Aryati, L., 2016), a new integral, the Countably 

Lipschitz or CL-integral, was defined. A function f is CL-integrable on [a,b] if there exists a 

function F satisfying the countably Lipschitz condition on [a,b] (F ∈ CLC([a,b])) such that 

�′	
�  �  �	
�  almost everywhere. A function F ∈ CLC([a,b]) if there exists a countable 

collection {Xi} of subsets of [a,b] and a countable collection {Mi} of nonnegative numbers 

such that for any i, for any u,v ∈ Xi, we have|�	�� # �	��| , -	� # ��. It was shown that 

every CL-integrable function is also HK-integrable. 

RESULTS AND DISCUSSION 

 We start this section by stating the definition of the main subject, that is, the set of 

essentially bounded functions. Considering the proof that Riemann primitives satisfy the 

Lipschitz condition suggests intuitively that the primitives of other bounded integrable 

functions would also satisfy the Lipschitz condition. Recall that a real valued function f on [a,b] 

is said to be essentially bounded if there exists a bounded function g such that f = g almost 

everywhere on [a,b]. We will denote B([a,b]) as the set of all essentially bounded function on 

[a,b]. The following result immediately follows from the definition of B([a,b]). 

 

Proposition 2.1. A real valued function f ∈ B([a,b]) if and only if there exists a subset Φf  of 

[a,b] with full measure such that f is bounded on Φf. 

 

For any subset S ⊂ [a,b] and for a function f which is bounded on S, we set /0	1�  �
 23���	
� ∶  
 ∈  1� and -0	1�  �  &�5��	
� ∶  
 ∈  1�. 

 

Theorem 2.2. Let f ∈ B([a,b]). If f is HK-integrable with primitive F then for any subinterval 

[u,v] of [a,b], we have 

/0 ��, �� ∩ Φ0! , �	�� # �	��
� # � , -0 ��, �� ∩ Φ0!. 



 

 

11th ISC 2024 (Universitas Advent Indonesia, Indonesia) 

“Research and Education Sustainability: Unlocking Opportunities in Shaping Today's 

Generation Decision Making and Building Connections” October 22-23, 2024 

 

1425 

 

 

Proof. Since F is the HK-primitive of � and [u,v] ⊂ [a,b] then there is a sequence of positive 

functions δj,j = 1,2,3,... such that for every δj-fine division Dj = {([u,v],ξ)}, we have 

 

�	�� # �	�� � lim�→; ��!∑�	��	� # �� .  
 

Therefore, since HK-integral is invariant under changing of values for measure zero 

sets, we have 

/0	��, �� ∩ Φ0�	� # �� , �	��  #  �	�� , -0	��, �� ∩ Φ0�	� # ��. 

 

Corollary 2.3. Let f ∈ B([a,b]). If f is HK-integrable with primitive F, then F satisfies the 

Lipschitz condition. 

 

Proof. If � ∈ <	��, ��� and is HK-integrable with primitive F then there exists a �-

integrable bounded function g having F also as primitive. Then for any subinterval [u,v] of 

[a,b], we have 

 

/=	��, ��� , /=	��, ��� , �	�� # �	��
� # � , -=	��, ��� , -=	��,���. 

 

If M is the higher number between |mg([a,b])| and |Mg([a,b])|, then for any subinterval [u,v] of 

[a,b], we have |F(v) − F(u)| ≤ M(v − u).  

□ 

 

Corollary 2.4. If F is a differentiable function on [a,b] with bounded derivative, then F is 

Lipschitz. 

 

Corollary 2.5. Let f ∈ B([a,b]). If f is HK-integrable with primitive F, then �′	
� exists and is 

equal to �	
� whenever f is continuous at x. 

 

Proof. Let f ∈ B([a,b]) be HK-integrable with primitive F and x0 ∈ [a,b] such that f is 

continuous at x0. Then lim)→)?@
�	
� � �	
A� and that for x close enough to x0, we have 

 

/0	�
A, 
�� , �	
� # �	
A�

 # 
A

, -0	�
A, 
��. 
 

Taking the limit as 
 → 
A, we get 

 

�	
A� , lim)→)?@
�	
� # �	
A�


 # 
A
, �	
A�. 

 

Using similar argument, one can show that 
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�	
A� , lim)→)?B
�	
� # �	
A�


 # 
A
, �	
A�. 

 

Therefore �C	
A� � �	
A�. 

 

Theorem 2.6. If F satisfies the Lipschitz condition then there exists a bounded Henstock 

integrable function f with F as primitive. 

 

Proof. If F satisfies the Lipschitz condition then �′	
� exists almost everywhere on [a,b] and 

for some M ≥ 0, �′	
�  ,  - whenever �′	
� exists. Define a function f on [a,b] such that 

�	
� � �′	
� when �′	
� exists and �	
� � 0, otherwise. Then f is a bounded HK-integrable 

with F as primitive.  

 

Theorem 2.7. Let f be HK-integrable function on [a,b] with primitive F. Then f ∈ B([a,b]) if 

and only if F satisfies the Lipschitz condition. 

 

Proof. Let f be HK-integrable with primitive F. If f ∈ B([a,b]) then by Corollary 2.3, F 

satisfies the Lipschitz Condition. 

 

For the converse, let � be HK-integrable with primitive F satisfying the Lipschitz 

condition. Then F is differentiable almost everywhere. Let X ⊂ [a,b] such that �′	
�  �  �	
�. 

Also by F being Lipschitz, there exists a nonnegrative number M such that for any subinterval 

[u,v] of [a,b], |�	�� # �	��| , -	� # �� . Hence for any 
 ∈ E, �	
� � �′	
� ,  - . 

Therefore � is essentially bounded.  

□ 

Lemma 2.8. If a function F on [a,b] satisfies the Lipschitz condition then it satisfies the 

strong Lusin condition. 

 

Theorem 2.9. Let f ∈ B([a,b]). Then f is HK-integrable if and only if there exists a 

function F satisfying the Lipschitz condition such that �′	
� � �	
� almost everywhere. In 

this case, 	�� � ��
� � �	�� # �	��. 

 

Proof. Let f ∈ B([a,b]). If f is HK-integrable then by Theorem 2.3, F satisfies the Lipschitz 

condition. Furthermore, by Theorem 1.1, �C	
� � �	
� almost everywhere. 

 

For the converse, suppose there exists a function F satissfying the Lipschitz 

condition such that �C	
� � �	
� almost everywhere. By Lemma 2.8, F satisfies the strong 

Lusin condition. 

Therefore, by Theorem 1.2, f is HK-integrable and 	�� � ��
� � �	�� # �	��. 

 

We also have the following as auxiliary results. 

 

Theorem 3.1. (A verion of Cauchy extension). Let f be a function on [a,b] such that for all c 

∈ (a,b), f ∈ B([a,c]) and is HK-integrable on [a,c]. If 
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#∞ F limG→�	�� H �
�

�
� � F I∞ 

 

then f is HK-integrable with 	�� � ��
� �  �. 

 

Proof. Let �	�� � 0, �	
� � 	�� � �)
�  when 
 ∈ 	�, �� and �	��  �  �. Set an increasing 

sequence �JK� in [a,b] such that cn → b as n → ∞. By HK-integrability of � on [a,cn] with 

�	JK� � 	�� � �GL
� , it follows from Theorem 1.1 that for each n, �′	
� � �	
�  almost 

everywhere in [a,cn]. Furthermore, by Corollary 2.3, for each n, F satisfies the Lipschitz 

condition in [a,cn]. With F being Lipschitz on each [a,cn] and on {b}, then F satisfies the 

countably Lipschitz condition in [a,b]. Therefore F satisfies the countably Lipschitz condition 

and �′	
� � �	
� almost everywhere in [a,b]. Therefore f is HK-integrable. Furthermore, 

 

	�� H �
�

�
� �	�� # �	�� � limG→�	�� H �

�

�
. 

 

Theorem 3.2. (Integration by Parts). If F and G satisfy the Lipschitz condition in [a,b] and 

�′	
�  �  �	
�, M′	
�  �  N	
� almost everywhere then 

 

	�� H 	�N I �M�
�

�
� �	��M	�� # �	��M	��. 

 

Proof. Note that both F and G are continuous in [a,b], hence bounded. Let K be a common 

bound for F and G. Then for any [u,v] ⊂ [a,b], we have 

 
|�	��M	�� # �	��M	��| , |�	��M	�� # �	��M	��| I |�	��M	�� # �	��M	��| 

, �	|M	�� # M	��| I |�	�� # �	��|� 

 

It follows that �M satisfies the Lipschitz condition in [a,b]. Since 	�M�′	
� � �	
�N	
� I
�	
�M	
� almost everywhere and product of two bounded functions is a bounded function, 

the result follows from Theorem 2.9.  

 

Theorem 3.3. Let g ∈ B([a,b]) be HK-integrable with primitive G. If �: M	��, ��� → ℝ is in 

B([a,b]) and is HK-integrable then (f ◦ G)g is integrable and 

 

H �
Q	��

Q	��
� H 	� ∘ M�N

�

�
. 

 

Proof. Note that G is Lipschitz and M′	
�  �  N	
� almost everywhere on [a,b]. Let MG ≥ 0 

such that for any [u,v] ⊂ [a,b], we have |M	�� # M	��|  ,  -Q|� # �|. Also, since f is �-

integrable on G([a,b]), its primitive, say �, is Lipschitz and differentiable almost everywhere 

on G([a,b]) to f. Let -S  ≥ 0 such that for any [u,v] ⊂ G([a,b]), we have |�	�� # �	��| ,
-S|� # �|. Hence  
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|	� ∘ M�	�� # 	� ∘ M�	��|  ,  -S-Q|� #  �| 
 

Therefore � ∘ M  satisfy the Lipschitz condition, and hence differentiable almost 

everywhere, and in fact, differentiable almost everywhere to (f ◦ G)g. By Theorem 2.9, the 

result follows.  

 

A sequence (Fn) of functions on [a,b] is said to be equi-Lipschitz if there exists M ≥ 

0 such that for any [u,v] ⊂ [a,b], for any n, we have |�3	�� # �3	��| , -|	� # ��. 

 

Theorem 3.4. Let (Fn) be a sequence of functions on [a,b] which is equi-Lipschitz. Then there 

exists a function f ∈ B([a,b]) that is HK-integrable and a subsequence of (Fi) of (Fn) such that 

such that 

 

limT→; �T	�� # �T	�� � 	�� H �
�

�
. 

 

Proof. Since (Fn) is equi-Lipschitz, it is equi-continuous and therefore uniformly bounded. By 

Arzela-Ascoli’s theorem it has a uniformly convergent subsequence. For convenience in 

notation, let us just denote the uniformly convergent subsequence by (Fn). Let F be the limit 

of (Fn). Then F is Lipschitz and therefore differentiable almost everywhere. Define a function 

f on [a,b] such that �	
�  �  �′	
�  when �′	
�  exits and �	
� � 0  otherwise. Then �  is 

boounded and �-integrable with primitive �. In particular limT→; �T	�� # �T	�� � 	�� � ��
� . 

 

CONCLUSION, IMPLICATION, SUGGESTION, AND LIMITATIONS 

 The paper suggests that a full discussion of integrability of essentially bounded 

functions via Henstock-Kurzweil theory of integration is possible. One may explore 

convergence theorems for this set of integrable functions in the future. 
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