Genetic and Genomic Foundations For Capsicum Improvement And Development

Authors

  • Nkwiza Nankolongo Adventist University of the Philippines
  • Dr. Yllano Orlex

https://doi.org/10.35974/isc.v11i6.3615

Keywords:

Capsicum, Genetic Diversity, Genome, Chromosomes, Ploidy Levels

Abstract

Capsicum is a genetically diverse eudicot, diploid, and self-pollinating plant that grows well in slightly warmer environments. This paper critically reviews capsicum biology, horticultural characteristics, genetic diversity, ploidy levels, chromosome structure, genome organisation and phylogenetic relationships. The related literature presented in this paper was obtained from scientific sites and journals available in resources such as NCBI, ScienceDirect, SAGE journals, Google Scholar, ResearchGate and many more. Using Molecular Evolutionary Genetics Analysis (MEGA 11) 22 NADH dehydrogenase sequences were extracted from NCBI and then aligned. The findings discuss that capsicum has a chromosome number 2n=2x=24. In contrast, wild species are known to have a ploidy level of 2n=2x=26. The capsicum genome is estimated to be between 1498cM and 2268cM. Hot peppers’ genomic sequencing data revealed 37.989 scaffolds with an estimated size of 3.48Gb, 34771 in tomatoes, and 39031 genes in potatoes. Based on the capsicum phylogenetic relationship, 22 species of capsicum were rooted. The information discussed in this study is indispensable in Capsicum frontier research, breeding, development, management and utilization of this economically important and highly regarded crop worldwide.

Article Metrics

Downloads

Download data is not yet available.

References

Adhikari, P., McNellie, J., & Panthee, D. R. (2020). Detection of Quantitative Trait Loci (QTL) Associated with the Fruit Morphology of Tomato. Genes, 11(10), 1117. https://doi.org/10.3390/genes11101117

Aguilar-Melendez, A., Morrell, P. L., Roose, M. L., & Kim, S.-C. (2009). Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. American Journal of Botany, 96(6), 1190–1202. https://doi.org/10.3732/ajb.0800155

Barchi, L., Rabanus‐Wallace, M. T., Prohens, J., Toppino, L., Padmarasu, S., Portis, E., Rotino, G. L., Stein, N., Lanteri, S., & Giuliano, G. (2021). Improved genome assembly and pan‐genome provide key insights into eggplant domestication and breeding. The Plant Journal, 107(2), 579–596. https://doi.org/10.1111/tpj.15313

Basu, S.K., & De, A.K. (2003). Capsicum: historical and botanical perspectives. https://www.semanticscholar.org/paper/Capsicum%3A-historical-and-botanical-perspectives-Basu-De/b1d8db5673dca8e98bed971f4a8e7ec0254fea9f

Botanical Garden, Slovak University of Agriculture in Nitra, Slovakia, M. M. Gryshko National Botanical Garden of Ukraine of National Academy of Sciences, Kyiv, Ukraine, Institute of Biological Conservation and Biosafety, Slovak University of Agriculture in Nitra, Slovakia, Department of Technology and Quality of Plant Products, Slovak University of Agriculture in Nitra, Slovakia, Department of Human Nutrition, Slovak University of Agriculture in Nitra, Slovakia, Mňahončáková, E., Vergun, O., Grygorieva, O., Sedláčková, V. H., Ivanišová, E., Šramková, K. F., Hrúzová, M., & Brindza, J. (2021). Evaluation of the antioxidant potential of Capsicum annuum L., C. baccatum L. and C. chinense Jacq. Cultivars [pdf]. Acta Scientiarum Polonorum Technologia Alimentaria, 20(2), 223–236. https://doi.org/10.17306/J.AFS.2021.0941

Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15–25. https://doi.org/10.1104/pp.106.077867

Carrizo García, C., Barfuss, M. H. J., Sehr, E. M., Barboza, G. E., Samuel, R., Moscone, E. A., & Ehrendorfer, F. (2016). Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Annals of Botany, 118(1), 35–51. https://doi.org/10.1093/aob/mcw079

Chaim, A., Borovsky, Y., Rao, G., Gur, A., Zamir, D., & Paran, I. (2006). Comparative QTL mapping of fruit size and shape in tomato and pepper. Israel Journal of Plant Sciences, 54(3), 191–203. https://doi.org/10.1560/IJPS_54_3_191

Doganlar, S., Frary, A., Daunay, M.-C., Lester, R. N., & Tanksley, S. D. (2002). Conservation of Gene Function in the Solanaceae as Revealed by Comparative Mapping of Domestication Traits in Eggplant. Genetics, 161(4), 1713–1726. https://doi.org/10.1093/genetics/161.4.1713

García-González, C. A., & Silvar, C. (2020). Phytochemical Assessment of Native Ecuadorian Peppers (Capsicum spp.) and Correlation Analysis to Fruit Phenomics. Plants, 9(8), 986. https://doi.org/10.3390/plants9080986

Hawkes, J. G., Lester, R. N., & Skelding, A. D. (Eds.). (1979). The Biology and taxonomy of the Solanaceae. Published for the Linnean Society of London by Academic Press. Howard

LR, Wildman RE. (2007) Antioxidant vitamin and phytochemical content of fresh and processed pepper fruit (Capsicum annuum), In: Wildman REC (Ed), Nutraceuticals and Functional Foods, 2nd Ed. CRC Press, Boca Raton, Florida, 165-191.

Hurtado, M., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F. J., Andújar, I., & Prohens, J. (2013). Phenomics of fruit shape in eggplant (Solanum melongena L.) using Tomato Analyzer software. Scientia Horticulturae, 164, 625–632. https://doi.org/10.1016/j.scienta.2013.10.028

Ifuku, K., Endo, T., Shikanai, T., & Aro, E.-M. (2011). Structure of the Chloroplast NADH Dehydrogenase-Like Complex: Nomenclature for Nuclear-Encoded Subunits. Plant and Cell Physiology, 52(9), 1560–1568. https://doi.org/10.1093/pcp/pcr098

Jarret, R. L. (2008). DNA barcoding in a crop genebank: the Capsicum annuum species complex. The Open Biology Journal, 1(1), 35-42.

Knapp, S. (2002). Tobacco to tomatoes: A phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany, 53(377), 2001–2022. https://doi.org/10.1093/jxb/erf068

Leimu, R., Mutikainen, P. I. A., Koricheva, J., & Fischer, M. (2006). How general are positive relationships between plant population size, fitness and genetic variation?. Journal of Ecology, 94(5), 942-952.

Misawa, K., & Tajima, F. (2000). A Simple Method for Classifying Genes and a Bootstrap Test for Classifications. Molecular Biology and Evolution, 17(12), 1879–1884. https://doi.org/10.1093/oxfordjournals.molbev.a026289

Moulin, M. M., Rodrigues, R., Ramos, H. C. C., Bento, C. S., Sudré, C. P., Gonçalves, L. S. A., & Viana, A. P. (2015). Construction of an integrated genetic map for Capsicum baccatum L. Genetics and Molecular Research, 14(2), 6683–6694. https://doi.org/10.4238/2015.June.18.12

Nunome, T., Ishiguro, K., Yoshida, T., & Hirai, M. (2001). Mapping of Fruit Shape and Color Development Traits in Eggplant(Solanum melongena L.) Based on RAPD and AFLP Markers. Breeding Science, 51(1), 19–26. https://doi.org/10.1270/jsbbs.51.19

Passam, Harold & Karapanos, Ioannis. (2016). Eggplants, peppers and tomatoes: Factors affecting the quality and storage life of fresh and fresh-cut (minimally processed) produce. The European Journal of Plant Science and Biotechnology. 2. 156-170.

Reed, D. H., & Frankham, R. (2003). Correlation between Fitness and Genetic Diversity. Conservation Biology, 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x

Rodríguez, G. R., Muños, S., Anderson, C., Sim, S.-C., Michel, A., Causse, M., Gardener, B. B. M., Francis, D., & van der Knaap, E. (2011). Distribution of SUN, OVATE, LC , and FAS in the Tomato Germplasm and the Relationship to Fruit Shape Diversity. Plant Physiology, 156(1), 275–285. https://doi.org/10.1104/pp.110.167577

Taher, D., Solberg, S. Ø., Prohens, J., Chou, Y., Rakha, M., & Wu, T. (2017). World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Frontiers in Plant Science, 8, 1484. https://doi.org/10.3389/fpls.2017.01484

Tripodi, P., & Kumar, S. (2019). The Capsicum Crop: An Introduction. In N. Ramchiary & C. Kole (Eds.), The Capsicum Genome (pp. 1–8). Springer International Publishing. https://doi.org/10.1007/978-3-319-97217-6_1

Vilarinho, L. B. O., Henriques da Silva, D. J., Greene, A., Salazar, K. D., Alves, C., Eveleth, M., Nichols, B., Tehseen, S., Khoury, J. K., Johnson, J. V., Sargent, S. A., & Rathinasabapathi, B. (2015). Inheritance of Fruit Traits in Capsicum annuum: Heirloom Cultivars as Sources of Quality Parameters Relating to Pericarp Shape, Color, Thickness, and Total Soluble Solids. Journal of the American Society for Horticultural Science, 140(6), 597–604. https://doi.org/10.21273/JASHS.140.6.597

Zygier, S., Chaim, A. B., Efrati, A., Kaluzky, G., Borovsky, Y., & Paran, I. (2005). QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theoretical and Applied Genetics, 111(3), 437–445. https://doi.org/10.1007/s00122-005-2015-7

Downloads

Published

2024-10-23

How to Cite

Nankolongo, N., & Yllano, O. . (2024). Genetic and Genomic Foundations For Capsicum Improvement And Development. 11th International Scholars Conference, 11(6), 1564-1573. https://doi.org/10.35974/isc.v11i6.3615