Primitives of Essentially Bounded Henstock-Kurzweil Integrable Functions

Authors

  • Abraham P. Racca Adventist University of Philippines
  • Precious R Tayaben Adventist University of the Philippines
  • Peter V Datoy Adventist University of the Philippines

https://doi.org/10.35974/isc.v11i5.3486

Keywords:

Henstock-Kurzweil integral, essentially bounded functions

Abstract

A full descriptive characterization of essentially bounded Henstock-Kurzweil integrable function is given. More precisely, an essentially bounded function  on  is Henstock-Kurzweil integrable if and only if there exists a function F satisfying the Lipschitz condition on [a,b] with  almost everywhere. Some implications were given, including integration by parts, substitution formula and a convergence theorem. These known results were presented and proved using the existing results in the Henstock-Kurzweil integration.

Article Metrics

Downloads

Download data is not yet available.

References

Bartle, R. G. (2001). A modern theory of integration. Graduate Studies in Mathematics, 32. American Mathematical Society.

Bongiorno, B., & Piazza, L. (1996). A new full descriptive characterization of the Denjoy-Perron integral. Real Analysis Exchange, 21(2), 656-665.

Calunod, I. D., & Garces, I. J. L. (n.d.). Strong derivative and the essentially Riemann integral. Real Analysis Exchange. (To appear).

Indrati, Ch. R., & Aryati, L. (2016). The countably Lipschitz integral. Global Journal of Pure and Applied Mathematics, 12(5), 3991-3999.

Lee, P. Y. (1989). Lanzhou lectures on Henstock integration. World Scientific Publishing.

Lee, P. Y. (2007). The integral à la Henstock. Scientiae Mathematicae Japonicae Online, e-2007, 763-771.

Lee, P. Y., & Vyborny, R. (2000). The integral: An easy approach after Kurzweil and Henstock. Cambridge University Press.

Thompson, B. S. (2014). Strong derivatives and integrals. Real Analysis Exchange, 39(2), 469-488.

Downloads

Published

2024-10-23

How to Cite

Racca, A. P., Tayaben, P. R., & Datoy, P. V. (2024). Primitives of Essentially Bounded Henstock-Kurzweil Integrable Functions. 11th International Scholars Conference, 11(5), 1423-1429. https://doi.org/10.35974/isc.v11i5.3486