Perbandingan Algoritma LSTM Untuk Analisis Sentimen Pengguna Twitter Terhadap Layanan Rumah Sakit Saat Pandemi Covid-19

Penulis

  • Anggreiny Rolangon Universitas Klabat
  • Axcel Weku Universitas Klabat
  • Green Arther Sandag Universitas Klabat

https://doi.org/10.36342/teika.v13i01.3063

Kata Kunci:

Twitter, LSTM, GRU, SimpleRNN, BiLTSM

Abstrak

Analisis sentimen telah menjadi aspek penting dalam memahami pendapat dan emosi masyarakat tentang berbagai isu. Dalam penelitian ini, dilakukan analisis sentimen pada tweet terkait layanan rumah sakit selama pandemi COVID-19 menggunakan model LSTM, BiLSTM, GRU, dan SimpleRNN. Proses pengumpulan data dilakukan menggunakan Twitter API dan menghasilkan 15.093 tweet. Proses preprocessing data meliputi pembersihan data, case folding, tokenisasi, filtering, dan stemming. Dataset dibagi menjadi 80% untuk pelatihan dan 20% untuk pengujian. Hasilnya menunjukkan bahwa model BiLSTM memiliki akurasi tertinggi sebesar 86%, diikuti model GRU dengan akurasi 86%, model LSTM dengan akurasi 85%, dan model SimpleRNN dengan akurasi 75%. Model BiLSTM juga memiliki MCC tertinggi sebesar 71%. Penelitian ini menyimpulkan bahwa model BiLSTM lebih unggul dibandingkan model lain dalam memprediksi sentimen tweet terkait layanan rumah sakit selama pandemi COVID-19. Temuan penelitian ini dapat memiliki implikasi signifikan bagi penyedia layanan kesehatan dalam meningkatkan kualitas layanan dan meningkatkan kepuasan pasien selama pandemi.

Article Metrics

Unduhan

Data unduhan belum tersedia.

Referensi

H. Leite, C. Lindsay, and M. Kumar, “COVID-19 outbreak: implications on healthcare operations,” TQM J., vol. 33, no. 1, pp. 247–256, 2021, doi: 10.1108/TQM-05-2020-0111.

S. R. Razu et al., “Challenges Faced by Healthcare Professionals During the COVID-19 Pandemic: A Qualitative Inquiry From Bangladesh,” Front. Public Heal., vol. 9, no. August, 2021, doi: 10.3389/fpubh.2021.647315.

AHA, “Data Brief: Health Care Workforce Challenges Threaten Hospitals’ Ability to Care for Patients,” Am. Hosp. Assoc., no. August, pp. 2020–2021, 2022, [Online]. Available: https://www.aha.org/system/files/media/file/2021/11/data-brief-health-care-workforce-challenges-threaten-hospitals-ability-to-care-for-patients.pdf.

R. Saptari, Rianto, and A. I. Gufroni, “Analisis Sentimen Pengguna Twitter Terhadap Pelayanan Unit Gawat Darurat Rumah Sakit Umum di Indonesia Menggunakan Seleksi Fitur Information Gain dan Support Vector Machine,” Journal Oof Informatics Education, vol. XX. pp. 104–110, 2018, [Online]. Available: http://e-journal.ivet.ac.id/index.php/jiptika/article/view/1925/1369.

R. C. Staudemeyer and E. R. Morris, “Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks,” pp. 1–42, 2019, [Online]. Available: http://arxiv.org/abs/1909.09586.

S. Agrawal, S. K. Jain, S. Sharma, and A. Khatri, “COVID-19 Public Opinion: A Twitter Healthcare Data Processing Using Machine Learning Methodologies,” Int. J. Environ. Res. Public Health, vol. 20, no. 1, 2023, doi: 10.3390/ijerph20010432.

G. A. Sandag, A. M. Manueke, and M. Walean, “Sentiment Analysis of COVID-19 Vaccine Tweets in Indonesia Using Recurrent Neural Network (RNN) Approach,” 3rd Int. Conf. Cybern. Intell. Syst. ICORIS 2021, 2021, doi: 10.1109/ICORIS52787.2021.9649648.

J. D. C. Aruan, B. Rahyudi, and A. Ridok, “Analisis Sentimen Opini Masyarakat terhadap Pelayanan Rumah Sakit Umum Daerah menggunakan Metode Support Vector Machine dan Term Frequency – Inverse Document Frequency,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 5. pp. 2072–2078, 2022.

A. P. Rodrigues et al., “Real-Time Twitter Spam Detection and Sentiment Analysis using Machine Learning and Deep Learning Techniques,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/5211949.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.8.1735.

I. Goodfellow, Y. Bengio, and A. Courville, “Book: Deep Learning,” Prmu, pp. 1–10, 2016, [Online]. Available: www.deeplearningbook.org.

S. Minaee, E. Azimi, and A. Abdolrashidi, “Deep-Sentiment: Sentiment Analysis Using Ensemble of CNN and Bi-LSTM Models,” 2019, [Online]. Available: http://arxiv.org/abs/1904.04206.

M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, “A CNN-BiLSTM Model for Document-Level Sentiment Analysis,” Mach. Learn. Knowl. Extr., vol. 1, no. 3, pp. 832–847, 2019, doi: 10.3390/make1030048.

K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” EMNLP 2014 - 2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., pp. 1724–1734, 2014, doi: 10.3115/v1/d14-1179.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” pp. 1–9, 2014, [Online]. Available: http://arxiv.org/abs/1412.3555.

R. Ni and H. Cao, “Sentiment Analysis based on GloVe and LSTM-GRU,” Chinese Control Conf. CCC, vol. 2020-July, pp. 7492–7497, 2020, doi: 10.23919/CCC50068.2020.9188578.

M. B. Silva, Percepção da população assistida sobre a inserção de estudantes de medicina na Unidade Básica de Saúde, First Edit., vol. 1, no. 9. O’Reilly Media, 2016.

F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-Janua, no. December, pp. 391–394, 2018, doi: 10.1109/IALP.2017.8300625.

##submission.downloads##

Diterbitkan

2023-05-01

Cara Mengutip

Rolangon, A. ., Weku, A. ., & Sandag, G. A. (2023). Perbandingan Algoritma LSTM Untuk Analisis Sentimen Pengguna Twitter Terhadap Layanan Rumah Sakit Saat Pandemi Covid-19. TeIKa, 13(01), 31-40. https://doi.org/10.36342/teika.v13i01.3063