Data Mining Implementation in Determining the Correlation Between Student Attitude Violations at Purwodadi Adventist High School Environment Using the Association Rule Algorithm

Authors

  • Gomgom Yosua Balutaro Sihotang PT Kosada Group Indonesia

https://doi.org/10.36342/teika.v11i1.2479

Keywords:

Data Mining, Association Rule, Violations Committed, Fp-Growth

Abstract

The student is a "student subject" in which human values ​​as individuals, who as social beings who have a moral identity, need to be developed to reach a level of a process to achieve ideal results and the criteria for life as a human being expected by the nation and state. This study allows researchers to find the correlation value between data violations among students of the Adventist Purwodadi High School. Violation data is calculated using the association rule method using the FP-Growth algorithm. Namely by combining violation data based on attributes, namely the types of violations committed. The results received will provide information on the correlation of the hidden violations of 2016-2020 students at the Purwodadi Adventist High School. This study found 27 association rules. The results obtained are expected to be able to assist schools in arranging their students to suit the vision and mission of the Purwodadi Adventist High School.

Article Metrics

Downloads

Download data is not yet available.

References

M. Strategi Belajar Mengajar, Surabaya: Citra Media, 2005.

S. S. Willis, Remaja dan Masalahnya, Bandung: Alfabeta, 2010.

W. S. Sarlito, Psikologi Remaja, Jakarta: Raja Grafindo Pustaka, 2012.

M. Kun and S. Juju, Sosiologi untuk SMA dan MA Kelas X, Jakarta: Esis, 2007.

H. Jiawei and M. Kamber, Data Mining: Concepts and Techniques, 2nd Edition, San Fransisco: Morgan Kaufmann Publishers, 2006.

A. A. Fajrin and A. Maulana, "Penerapan Data Mining Untuk Analisa Pola Pembelian Konsumen Dengan Algoritma FP-Growth Pada Data transaksi Penjualan Spare Part Motor," Kumpulan Jurnal Ilmu Komputer (KLIK), pp. 27-36, 2018.

Y. W. Wahdi, "Implementasi Data Mining Untuk Analisa Tingkat Pelanggaran Lalu Lintas Dengan Algoritma Association Rule," Ruang Teknik Journal, pp. 105-112, 2018.

Y. S. Nugroho, "Data Mining Menggunakan Algoritma Naive Bayes Untuk Klasifikasi Kelulusan Universitas Dian Nuswantoro," pp. 1-10, 2014.

D. Samuel, "Penerapan Struktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset," Institut Teknologi Bandung, 2008.

I. Ali, Manajemen Peserta Didik Berbasis Sekolah, Jakarta: Bumi Aksara, 2011.

E. T. Luthfi and Kusrini, Algoritma Data Mining, Yogyakarta: Andi Offset, 2009.

S. Budi, Data Mining Teknik Pemanfaatan Data Untuk Keperluaan Bsinis, Yogyakarta: Graha Ilmu, 2007.

I. Pramudiono, "http://datamining.japati.net," 16 Januari 2007. [Online]. Available: http://datamining.japati.net/cgi-bin/indodm.cgi?bacaarsip&1155527614&artikel.

U. David, "Mining an Online Auctions Data Warehose,," in Proceedings of MASPLAS'02 the Mid-Atlantic Student Workshop on Programming Languages and System Pace University, 2002.

kemdikbud, "PENETAPAN KRITERIA KETUNTASAN MINIMAL," [Online]. Available: https://pklk.gtk.kemdikbud.go.id/webpage/show_pdf_article/artikel/2e01e17467891f7c933dbaa00e1459d23db3fe4f.

J. Han, J. Pei and M. Kamber, Data mining, concepts and techniques., Elsevier, 2011.

Published

2021-05-04

How to Cite

Sihotang, G. Y. B. (2021). Data Mining Implementation in Determining the Correlation Between Student Attitude Violations at Purwodadi Adventist High School Environment Using the Association Rule Algorithm. TeIKa, 11(1), 87-98. https://doi.org/10.36342/teika.v11i1.2479