Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan
https://doi.org/10.36342/teika.v6i1.271
Abstract
Abstrak
Gauss menguraikan tiga teori untuk menyelesaikan persamaan linier. Dimana teori tersebut diturunkan dari metode eleminasi penjumlahan, pengurangan dan subsitusi. Kendala yang ditemukan dikelas adalah mahasiswa lambat memahaminya, sehingga diperlukan modifikasi metode Gauss yang dapat menerangkan dan menjembatani peralihan dari metode eliminasi ke metode Gauss.
Peralihan yang dapat dilakukan adalah dengan menggabungkan dua teori Gauss/Operasi Baris Elementer yaitu dengan menggabungkan mengalikan sebuah baris dengan bilangan k ≠0 dari matrik A yang disebut Operasi Tipe II dan dengan menambahkan sebuah baris i dengan mengalikan k ≠0 pada baris yang lain dimana i ≠j dari matrik A disebut Operasi tipe III menjadi satu yaitu dengan menambahkan k1 ≠0 kali baris ke i dengan k2 ≠0 kali baris ke j dimana i ≠j dari matrik A yang disebut sebagai Modifikasi Operasi Tipe III.
Modification of Gauss Method or the Elementary Row Operations System Solutions of Linear Equations of 3 Variables and 3 Equations
Abstract
Gauss outlines three theories to solve linear equations. The theory derived from the Elimination Method such that addition, reduction and aubstitution. Problems were found in class is a slow student to understand it, so that the necessary modifications Gauss method that can explain and bridge the transition from Elimination Method to Gaussian Method.
Transition to do is to combine the two rule of Gaussian Method / Elemantary Row Operations by the incorporation multiplying a row with number k ≠0 of matix A so-called Operation Type II and by adding a row i by multiplying k ≠0 on the other row where i ≠j of matrix A is called Operation Type III into one by adding k1 ≠0 times row i with k2 ≠0 times row j where i ≠j of matrix A is referred to as Modification Operation Type III.
Downloads
References
Conte, s. D., & Boor, C. 1980. Elementary Numerical analysis. 3rd Edition. New York: McGraw-Hill Book.
Kolman, B. 1993. Elementary Linear Algebra. 3rd Edition. New York: Mamillan Publishing.
Munakata, T. 1979. Matrices and Linear Programming. CA: Holden-Day.
Munir, R. 2013. Metode Numerik. Bandung: Informatika.
Wahyudin. 1987. Metode Analisis Numerik.a: Bandung: Tarsito.
Downloads
Published
How to Cite
Issue
Section
License
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Share Alike Attribution Licence (CC-BY-SA What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.