Application of K-means and Genetic Algorithm for MTSP

Authors

  • Muhammad Faiz Nailun Ni'am Universitas Nurul Jadid
  • Nur Hamid Program Studi Pendidikan Matematika, Universitas Nurul Jadid.

https://doi.org/10.36342/teika.v13i02.3221

Keywords:

MTSP, Genetic Algorithm, Cluster Division, K-means

Abstract

This article implements a combination of K-means and genetic algorithms to solve the Multiple Traveling Salesman Problem (MTSP) while avoiding intersections between the paths of traveling salesmen. There are several objectives within this issue, including finding the shortest path for each route and determining the optimal number of cluster divisions. In this research, we attempt to combine the K-means algorithm and genetic algorithm to address the MTSP with cluster divisions. The study involves dividing destinations using K-means and applying the Genetic Algorithm to these clusters. The results demonstrate that the combination of Genetic Algorithm and cluster division significantly contributes to efficient travel route planning. Clustering enables the grouping of destinations with similar geographic characteristics, leading to more optimal routes. In future research, optimizing parameters and integrating other methods can be explored to enhance the solution for travel planning.

Article Metrics

Downloads

Download data is not yet available.

References

“Multiple Traveling Salesman Problem menggunakan Algoritma Ant Colony Optimization dengan Operasi Elitism,” jcis, vol. 2, no. 1.

K. Krishna dan M. Narasimha Murty, “Genetic K-means algorithm,” IEEE Trans. Syst., Man, Cybern. B, vol. 29, no. 3, hlm. 433–439, Jun 1999, doi: 10.1109/3477.764879.

U. Maulik dan S. Bandyopadhyay, “Genetic algorithm-based clustering technique,” Pattern Recognition, vol. 33, no. 9, hlm. 1455–1465, Sep 2000, doi: 10.1016/S0031-3203(99)00137-5.

Z. Lu, K. Zhang, J. He, dan Y. Niu, “Applying K-means Clustering and Genetic Algorithm for Solving MTSP,” dalam Bio-inspired Computing – Theories and Applications, M. Gong, L. Pan, T. Song, dan G. Zhang, Ed., dalam Communications in Computer and Information Science, vol. 682. Singapore: Springer Singapore, 2016, hlm. 278–284. doi: 10.1007/978-981-10-3614-9_34.

“Data refrensi pendidikan.” Kemendikbud (2022). Diakses: 16 Agustus 2023. [Daring]. Tersedia pada: https://referensi. data.kemdikbud.go.id/index11.php?kode=052000&level=2

“Google Earth,” Google (2022). Diakses: 16 Agustus 2023. [Daring]. Tersedia pada: https://earth.google.com

Y. Agusta, “K-Means – Penerapan, Permasalahan dan Metode Terkait,” vol. 3, 2007.

S. Monalisa, “Klusterisasi Customer Lifetime Value dengan Model LRFM menggunakan Algoritma K-Means,” JTIIK, vol. 5, no. 2, hlm. 247, Mei 2018, doi: 10.25126/jtiik.201852690.

D. Hermawanto, “Algoritma Genetika dan Contoh Aplikasinya”.

R. S. Armanda dan W. F. Mahmudy, “Penerapan Algoritma Genetika Untuk Penentuan Batasan Fungsi Kenggotaan Fuzzy Tsukamoto Pada Kasus Peramalan Permintaan Barang,” JTIIK, vol. 3, no. 3, hlm. 169, Des 2016, doi: 10.25126/jtiik.201633201.

Published

2023-12-02

How to Cite

Ni’am, M. F. N., & Hamid, N. (2023). Application of K-means and Genetic Algorithm for MTSP. TeIKa, 13(02), 173-183. https://doi.org/10.36342/teika.v13i02.3221