Sentiment Analysis on YouTube Comments in MPL Season 13 Tournament Using Ensemble Machine Learning Method
https://doi.org/10.36342/teika.v14i2.3722
Keywords:
Sentiment, Ensemble Machine Learning, Preprocessing, Classification, MPL Season 13Abstract
Sentiment analysis of comments on YouTube videos related to MPL Season 13 was conducted using an Ensemble Learning-based classification method. This study focuses on identifying sentiment patterns in comments and determining team popularity based on positive fan support. The methods employed include initial planning, data collection through scraping techniques using the YouTube Data API v3, and preprocessing steps. From a total of 6,424 comments collected, the number of relevant comments was reduced to 5,185 after the cleaning, case folding, stopword removal, slang conversion, stemming, and tokenization stages, resulting in 3,131 positive comments and 2,064 negative comments. Various classification methods were applied simultaneously and combined using ensemble machine learning techniques with a majority voting approach. Before classification, the data was processed using SMOTE (Synthetic Minority Over-sampling Technique) to address class imbalance. The testing results showed that the hard voting method achieved an accuracy of 86,70% (with 90% training data and 10% testing data), while the soft voting method reached an accuracy of 86,17%. The labeling process was carried out using the Flair library, validated by a confusion matrix. The application of a labeling method that combines both automatic and manual approaches successfully improved classification accuracy and minimized potential errors. Additionally, this analysis identified the highest supporter count, with 877 supporters for EVOS, followed by RRQ and ONIC with 743 and 556 supporters, respectively. This research is expected to make a significant contribution to the development of sentiment analysis in the context of e-sports and open up opportunities for further analysis in future research.Downloads
References
Y. Anisa, “Peran Channel Youtube Sebagai Media Alternatif untuk Membantu Proses Pembelajaran Matematika dan Media Informasi pada Tingkat Perguruan Tinggi,” 2022. [Online]. Available: https://ejournal.unib.ac.id/index.php/jpmr
G. Sanjaya and K. Muslim Lhaksmana, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju Menggunakan Lexicon Based,” e-Proceeding Eng., vol. 7, no. 3, pp. 9698–9710, 2020, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/10703
R. Yusrinawati, “Analisis Perilaku Konsumtif Pemain Game Mobile Legends Bang Bang di ESports Indonesia Jember یلیب,” Nucl. Phys., vol. 13, no. 1, pp. 104–116, 2023.
D. Wahyuni, “TANTANGAN DAN PELUANG ESPORTS DALAM KEOLAHRAGAAN NASIONAL CHALLENGES AND OPPORTUNITIES OF ESPORTS IN NATIONAL SPORTS,” Kajian, vol. 25, no. 4, pp. 341–353, 2020, [Online]. Available: https://beritagar.id/artikel/arena/
J. Budiman, R. Limgestu, and I. Tri Sagianto, “Perilaku Keputusan Investasi Investor Pasar Saham Indonesia,” J. Ilm. Akunt. dan Keuang., vol. 5, no. 9, pp. 3518–3526, 2023, [Online]. Available: https://journal.ikopin.ac.id/index.php/fairvalue
F. Gunardi, “PENGARUH E-SPORTS MARKETING DAN KEPUASAN PELANGGAN TERHADAP BRAND LOYALTY RAZER INC,” 2020.
D. Puspita Nilamsari and I. Parma Dewi, “Jurnal Vocational Teknik Elektronika dan Informatika,” J. Vocat. Tek. Elektron. dan Inform., vol. 11, no. 1, pp. 96–102, 2023, [Online]. Available: http://ejournal.unp.ac.id/index.php/voteknika/index
M. Yasir and R. Suraji, “Perbandingan Metode Klasifikasi Naive Bayes, Decision, Tree, Random Forest Terhadap Analisis Sentimen Kenaikan Biaya Haji 2023 pada Media Sosial Youtube,” J. Cahaya Mandalika, vol. 3, no. 2, pp. 180–192, 2023.
A. E. Budiman and A. Widjaja, “Analisis Pengaruh Teks Preprocessing Terhadap Deteksi Plagiarisme Pada Dokumen Tugas Akhir,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, pp. 475–488, 2020, doi: 10.28932/jutisi.v6i3.2892.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.
D. Dwi Kurnianto and S. Waluyo, “3 rd Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) 30 Agustus 2023-Jakarta,” 2023.
R. A. Fauzan and M. Mufti, “Analisis Sentimen Komentar Youtube Program Kampus Merdeka Berbasis Web Menggunakan Algoritma Multinomial Naïve Bayes,” Semin. Nas. Mhs. Fak. Teknol. Inf., vol. 2, no. 2, pp. 864–871, 2023, [Online]. Available: https://senafti.budiluhur.ac.id/index.php/senafti/article/view/929/563
M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi,” IOP Conf. Ser. Mater. Sci. Eng., vol. 874, no. 1, 2020, doi: 10.1088/1757-899X/874/1/012017.
Chely Aulia Misrun, E. Haerani, M. Fikry, and E. Budianita, “Analisis sentimen komentar youtube terhadap Anies Baswedan sebagai bakal calon presiden 2024 menggunakan metode naive bayes classifier,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 207–215, Apr. 2023, doi: 10.37859/coscitech.v4i1.4790.
S. M. Harahap and R. Kurniawan, “Analisis Sentimen Komentar Youtube Terhadap Food Vlogger Dengan Menggunakan Metode Naïve Bayes,” MEANS (Media Inf. Anal. dan Sist., vol. 9, no. 1, pp. 87–96, 2024, doi: 10.54367/means.v9i1.3912.
D. Firmansyah, F. Sutrisno, and S. Waluyo, “ANALISIS SENTIMEN MASYARAKAT MENGENAI KASUS KEKUASAAN NARKOBA PADA KOMENTAR YOUTUBE MENGGUNAKAN METODE K-NEAREST NEIGHBOURS,” 2024.
S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Khomsah, and A. S. Aribowo, “Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia,” J. Resti, vol. 1, no. 3, pp. 648–654, 2021.
B. Franko, N. Wilyanto, H. Irsyad, U. Multi, and D. Palembang, “Analisis Sentimen Terhadap Naturalisasi Pemain pada Youtube Menggunakan Decision Tree dan Naive Bayes Sentiment Analysis of Player Naturalization on Youtube Using Decision Trees and Naive Bayes,” vol. 03, no. September, pp. 8–16, 2024, doi: 10.57203/session.v3i1.2024.8-16.
B. I. Jimmy Alga, Cindi Wulandari, “Analisis Sentimen Aplikasi Youtube di Google Play Store Menggunakan Machine Learning,” RESOLUSI Rekayasa Tek. Inform. dan Inf. - ISSN 2745-7966, vol. 6, no. 1, pp. 197–207, 2024, [Online]. Available: https://djournals.com/resolusi
F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 9, pp. 4305–4313, 2022.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021.
D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 1, pp. 34–40, 2022, doi: 10.23960/jitet.v10i1.2262.
C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.
M. R. Nurhusen, J. Indra, and K. A. Baihaqi, “Analisis Sentimen Pengguna Twitter Terhadap Kenaikan Harga Bahan Bakar Minyak (BBM) Menggunakan Metode Logistic Regression,” J. Media Inform. Budidarma, vol. 7, no. 1, p. 276, 2023, doi: 10.30865/mib.v7i1.5491.
R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.
N. Agustina and C. N. Ihsan, “Pendekatan Ensemble untuk Analisis Sentimen Covid19 Menggunakan Pengklasifikasi Soft Voting,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, p. 263, 2023, doi: 10.25126/jtiik.20231026215.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 TeIKa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Share Alike Attribution Licence (CC-BY-SA What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.