Sentiment Analysis of 2018 West Java Governor Election in Twitter Application Using the Naïve Bayesian Classification Method

Authors

  • Yusran Tarihoran Fakultas Teknologi Informasi, Universitas Advent Indonesia
  • Kevin Jeremy Manurip Fakultas Teknologi Informasi, Universitas Advent Indonesia

https://doi.org/10.36342/teika.v8i1.2243

Keywords:

Sentiment Analysis, Candidate of West Java Governor, Ridwan Kamil, naïve bayesian classification

Abstract

Elections  on  West  Java  Governor  2018  are  busy  discussed  in  the  real  world  and cyberspace, especially in social media Twitter. Everyone is free to argue about the candidate of West Java Governor 2018 that raises many opinions, not only positive or neutral opinion, but also negative opinion. Nowadays, social media especially Twitter is one of the place to  promote  or  to  campaign effectively  and efficiently  to  increase supporters interest. In this case researchers will conduct research on one of the public figures who run for governor  elections  West Java. The research method used in this research is the Naïve Bayesian Classifer Classification algorithm. The data used is an Indonesian tweet with the keyword Ridwan Kamil (#RidwanKamil) as much as 1031 data tweet every day starting from January 15, 2018 to April 15, 2018. Results from the classification using the Naïve Bayesian Classifier algorithm obtained 690 number of tweets or 67% all data tweets that  support  Mr.  Ridwan Kamil or are positive especially on the work program  that will be done and this provides a probability statistics of 73.13% accuracy level Correctly Classified Instances.

Article Metrics

Downloads

Download data is not yet available.

References

Ariadi, D., & Fithriasari, K. (2015). Klasifikasi Berita Indonesia Menggunakan Metode Naive Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemmer. JURNAL SAINS DAN SENI ITS Vol. 4, No.2, 4(2), 248–253.

Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. 32 Integer Journal Maret, 1(2016), 32–41. Retrieved from https://www.researchgate.net/profile/Ghulam_Buntoro/publication/316617194_Analisis_Sentimen_Calon_Gubernur_DKI_Jakarta_2017_Di_Twitter/links/5907eee44585152d2e9ff992/Analisis-Sentimen-Calon-Gubernur-DKI-Jakarta-2017-Di-Twitter.pdf

Buntoro, G. A., Adji, T. B., & Purnamasari, A. E. (2014). Sentiment Analysis Twitter dengan Kombinasi Lexicon Based dan Double Propagation. Citee 2014, ISSN: 2085(OCTOBER 2014), 7–8.

Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. Imagine, 34, 410. https://doi.org/10.1179/1465312512Z.00000000017

H. Hasbullah, H Nasution, M. Saleh, L. P. S. ishlahiyah B. (2015). Laporan riset partisipasi pemilih pada pemilihan umum.

Hidayatullah, A. F., & Sn, A. (2014). Analisis Sentimen dan Klasifikasi Kategori Terhadap Tokoh Publik Pada Twitter. Seminar Nasional Informatika 2014, 2014(August 2013), 0–8.

Hidayatulloh, T. (2015). Kajian Komparasi Penerapan Algoritma Support Vector Machine ( Svm ) Dan Multilayer Perceptron ( Mlp ) Dalam Prediksi Indeks Saham Sektor Perbankan : Studi Kasus Saham Lq45 Idx. Bina Sarana Informatika, (July).

Khodra, M. L., Ayu, P., Insanudin, A., & Megally, M. (2013). Ekstraksi Informasi Transaksi Online pada Twitter. Cybermatika, 1(July), 1–4. Retrieved from http://elib.uni-stuttgart.de/opus/volltexte/2012/8012/

Kompas. (2018). Debat Publik Pertama: Pilgub Jawa Barat. Retrieved from https://www.youtube.com/watch?v=lbYD8FOKXCA

KPU. (2014). Daftar penelitian komisi pemilihan umum republik indonesia.

Lidya, S. K., Sitompul, O. S., & Efendi, S. (2015). Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine ( Svm ). Seminar Nasional Teknologi Dan Komunikasi 2015, 2015(Sentika), 1–8. https://doi.org/10.1016/j.eswa.2013.08.047

Ling, J., Kencana, I. putu E. N., & Oka, T. B. (2014). Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square. E-Jurnal Matematika, 3(3), 92–99.

Mujilahwati, S. (2016). Pre-Processing Text Mining Pada Data Twitter. Seminar Nasional Teknologi Informasi Dan Komunikasi, 2016(Sentika), 2089–9815.

Pikiran Rakyat. (2018). Tiga Masalah Utama Fokus Ridwan Kamil dan Uu Ruzhanul Ulum. Retrieved from http://www.pikiran-rakyat.com/bandung-raya/2018/03/13/tiga-masalah-utama-fokus-ridwan-kamil-dan-uu-ruz­hanul-ulum-421216

Putranti, N. D., & Winarko, E. (2014). Analisis Sentimen Twitter untuk Teks Berbahasa Indonesia dengan Maximum Entropy dan Support Vector Machine. Ijcss, 8(1), 91–100. https://doi.org/10.22146/ijccs.3499

Raharjo, B. (2018). Sentimen Analisis yang baik dan benar.

Saputra, N., Adji, T. B., & Permanasari, A. E. (2015). Analisis Sentimen Data Presiden Jokowi dengan Preprocessing Normalisasi dan Stemming menggunakan Metode Naive Bayes dan SVM, 5(November).

Sunni, I., & Widyantoro, D. H. (2012). Analisis Sentimen dan Ekstraksi Topik Penentu Sentimen pada Opini Terhadap Tokoh Publik. Jurnal Sarjana Institut Teknologi Bandung Bidang Teknik Elektro Dan Informatika, 1(2), 200–206.

Wikipedia. (2017). Penambangan Teks. Retrieved from https://id.wikipedia.org/wiki/Penambangan_teks

Published

2018-04-30

How to Cite

Tarihoran, Y., & Manurip, K. J. (2018). Sentiment Analysis of 2018 West Java Governor Election in Twitter Application Using the Naïve Bayesian Classification Method. TeIKa, 8(1), 99-105. https://doi.org/10.36342/teika.v8i1.2243

Most read articles by the same author(s)