Sentiment Analysis of 2018 West Java Governor Election in Twitter Application Using the Naïve Bayesian Classification Method
https://doi.org/10.36342/teika.v8i1.2243
Keywords:
Sentiment Analysis, Candidate of West Java Governor, Ridwan Kamil, naïve bayesian classificationAbstract
Elections on West Java Governor 2018 are busy discussed in the real world and cyberspace, especially in social media Twitter. Everyone is free to argue about the candidate of West Java Governor 2018 that raises many opinions, not only positive or neutral opinion, but also negative opinion. Nowadays, social media especially Twitter is one of the place to promote or to campaign effectively and efficiently to increase supporters interest. In this case researchers will conduct research on one of the public figures who run for governor elections West Java. The research method used in this research is the Naïve Bayesian Classifer Classification algorithm. The data used is an Indonesian tweet with the keyword Ridwan Kamil (#RidwanKamil) as much as 1031 data tweet every day starting from January 15, 2018 to April 15, 2018. Results from the classification using the Naïve Bayesian Classifier algorithm obtained 690 number of tweets or 67% all data tweets that support Mr. Ridwan Kamil or are positive especially on the work program that will be done and this provides a probability statistics of 73.13% accuracy level Correctly Classified Instances.
Downloads
References
Ariadi, D., & Fithriasari, K. (2015). Klasifikasi Berita Indonesia Menggunakan Metode Naive Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemmer. JURNAL SAINS DAN SENI ITS Vol. 4, No.2, 4(2), 248–253.
Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. 32 Integer Journal Maret, 1(2016), 32–41. Retrieved from https://www.researchgate.net/profile/Ghulam_Buntoro/publication/316617194_Analisis_Sentimen_Calon_Gubernur_DKI_Jakarta_2017_Di_Twitter/links/5907eee44585152d2e9ff992/Analisis-Sentimen-Calon-Gubernur-DKI-Jakarta-2017-Di-Twitter.pdf
Buntoro, G. A., Adji, T. B., & Purnamasari, A. E. (2014). Sentiment Analysis Twitter dengan Kombinasi Lexicon Based dan Double Propagation. Citee 2014, ISSN: 2085(OCTOBER 2014), 7–8.
Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. Imagine, 34, 410. https://doi.org/10.1179/1465312512Z.00000000017
H. Hasbullah, H Nasution, M. Saleh, L. P. S. ishlahiyah B. (2015). Laporan riset partisipasi pemilih pada pemilihan umum.
Hidayatullah, A. F., & Sn, A. (2014). Analisis Sentimen dan Klasifikasi Kategori Terhadap Tokoh Publik Pada Twitter. Seminar Nasional Informatika 2014, 2014(August 2013), 0–8.
Hidayatulloh, T. (2015). Kajian Komparasi Penerapan Algoritma Support Vector Machine ( Svm ) Dan Multilayer Perceptron ( Mlp ) Dalam Prediksi Indeks Saham Sektor Perbankan : Studi Kasus Saham Lq45 Idx. Bina Sarana Informatika, (July).
Khodra, M. L., Ayu, P., Insanudin, A., & Megally, M. (2013). Ekstraksi Informasi Transaksi Online pada Twitter. Cybermatika, 1(July), 1–4. Retrieved from http://elib.uni-stuttgart.de/opus/volltexte/2012/8012/
Kompas. (2018). Debat Publik Pertama: Pilgub Jawa Barat. Retrieved from https://www.youtube.com/watch?v=lbYD8FOKXCA
KPU. (2014). Daftar penelitian komisi pemilihan umum republik indonesia.
Lidya, S. K., Sitompul, O. S., & Efendi, S. (2015). Sentiment Analysis Pada Teks Bahasa Indonesia Menggunakan Support Vector Machine ( Svm ). Seminar Nasional Teknologi Dan Komunikasi 2015, 2015(Sentika), 1–8. https://doi.org/10.1016/j.eswa.2013.08.047
Ling, J., Kencana, I. putu E. N., & Oka, T. B. (2014). Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square. E-Jurnal Matematika, 3(3), 92–99.
Mujilahwati, S. (2016). Pre-Processing Text Mining Pada Data Twitter. Seminar Nasional Teknologi Informasi Dan Komunikasi, 2016(Sentika), 2089–9815.
Pikiran Rakyat. (2018). Tiga Masalah Utama Fokus Ridwan Kamil dan Uu Ruzhanul Ulum. Retrieved from http://www.pikiran-rakyat.com/bandung-raya/2018/03/13/tiga-masalah-utama-fokus-ridwan-kamil-dan-uu-ruzhanul-ulum-421216
Putranti, N. D., & Winarko, E. (2014). Analisis Sentimen Twitter untuk Teks Berbahasa Indonesia dengan Maximum Entropy dan Support Vector Machine. Ijcss, 8(1), 91–100. https://doi.org/10.22146/ijccs.3499
Raharjo, B. (2018). Sentimen Analisis yang baik dan benar.
Saputra, N., Adji, T. B., & Permanasari, A. E. (2015). Analisis Sentimen Data Presiden Jokowi dengan Preprocessing Normalisasi dan Stemming menggunakan Metode Naive Bayes dan SVM, 5(November).
Sunni, I., & Widyantoro, D. H. (2012). Analisis Sentimen dan Ekstraksi Topik Penentu Sentimen pada Opini Terhadap Tokoh Publik. Jurnal Sarjana Institut Teknologi Bandung Bidang Teknik Elektro Dan Informatika, 1(2), 200–206.
Wikipedia. (2017). Penambangan Teks. Retrieved from https://id.wikipedia.org/wiki/Penambangan_teks
Downloads
Published
How to Cite
Issue
Section
License
The submitting author warrants that the submission is original and that she/he is the author of the submission together with the named co-authors; to the extend the submission incorporates text passages, figures, data or other material from the work of others, the submitting author has obtained any necessary permission.
Articles in this journal are published under the Creative Commons Share Alike Attribution Licence (CC-BY-SA What does this mean?). This is to get more legal certainty about what readers can do with published articles, and thus a wider dissemination and archiving, which in turn makes publishing with this journal more valuable for you, the authors.
By submitting an article the author grants to this journal the non-exclusive right to publish it. The author retains the copyright and the publishing rights for his article without any restrictions.